Multi-illuminant estimation with conditional random fields

Shida Beigpour, Christian Riess, Joost Van De Weijer, Elli Angelopoulou

Producció científica: Contribució a una revistaArticleRecercaAvaluat per experts

69 Cites (Scopus)

Resum

Most existing color constancy algorithms assume uniform illumination. However, in real-world scenes, this is not often the case. Thus, we propose a novel framework for estimating the colors of multiple illuminants and their spatial distribution in the scene. We formulate this problem as an energy minimization task within a conditional random field over a set of local illuminant estimates. In order to quantitatively evaluate the proposed method, we created a novel data set of two-dominant-illuminant images comprised of laboratory, indoor, and outdoor scenes. Unlike prior work, our database includes accurate pixel-wise ground truth illuminant information. The performance of our method is evaluated on multiple data sets. Experimental results show that our framework clearly outperforms single illuminant estimators as well as a recently proposed multi-illuminant estimation approach. © 1992-2012 IEEE.
Idioma originalEnglish
Número d’article6637091
Pàgines (de-a)83-96
RevistaIEEE Transactions on Image Processing
Volum23
Número1
DOIs
Estat de la publicacióPublicada - 1 de gen. 2014

Fingerprint

Navegar pels temes de recerca de 'Multi-illuminant estimation with conditional random fields'. Junts formen un fingerprint únic.

Com citar-ho