TY - JOUR
T1 - Modulation of mitochondrial activity by S-nitrosoglutathione reductase in Arabidopsis thaliana transgenic cell lines
AU - Frungillo, Lucas
AU - De Oliveira, Jusceley Fatima Palamim
AU - Saviani, Elzira Elisabeth
AU - Oliveira, Halley Caixeta
AU - Martínez, M. Carmen
AU - Salgado, Ione
PY - 2013/3/1
Y1 - 2013/3/1
N2 - The enzyme S-nitrosoglutathione reductase (GSNOR) has an important role in the metabolism of S-nitrosothiols (SNO) and, consequently, in the modulation of nitric oxide (NO)-mediated processes. Although the mitochondrial electron transport chain is an important target of NO, the role of GSNOR in the functionality of plant mitochondria has not been addressed. Here, we measured SNO content and NO emission in Arabidopsis thaliana cell suspension cultures of wild-type (WT) and GSNOR overexpressing (GSNOROE) or antisense (GSNORAS) transgenic lines, grown under optimal conditions and under nutritional stress. Respiratory activity of isolated mitochondria and expression of genes encoding for mitochondrial proteins were also analyzed. Under optimal growth conditions, GSNOROE had the lowest SNO and NO levels and GSNORAS the highest, as expected by the GSNO-consuming activity of GSNOR. Under stress, this pattern was reversed. Analysis of oxygen uptake by isolated mitochondria showed that complex I and external NADH dehydrogenase activities were inhibited in GSNOROE cells grown under nutritional stress. Moreover, GSNOROE could not increase alternative oxidase (AOX) activity under nutritional stress. GSNORAS showed constitutively high activity of external NADH dehydrogenase, and maintained the activity of the uncoupling protein (UCP) under stress. The alterations observed in mitochondrial protein activities were not strictly correlated to changes in gene expression, but instead seemed to be related with the SNO/NO content, suggesting a post-transcriptional regulation. Overall, our results highlight the importance of GSNOR in modulating SNO and NO homeostasis as well mitochondrial functionality, both under normal and adverse conditions in A. thaliana cells. © 2012 Elsevier B.V.
AB - The enzyme S-nitrosoglutathione reductase (GSNOR) has an important role in the metabolism of S-nitrosothiols (SNO) and, consequently, in the modulation of nitric oxide (NO)-mediated processes. Although the mitochondrial electron transport chain is an important target of NO, the role of GSNOR in the functionality of plant mitochondria has not been addressed. Here, we measured SNO content and NO emission in Arabidopsis thaliana cell suspension cultures of wild-type (WT) and GSNOR overexpressing (GSNOROE) or antisense (GSNORAS) transgenic lines, grown under optimal conditions and under nutritional stress. Respiratory activity of isolated mitochondria and expression of genes encoding for mitochondrial proteins were also analyzed. Under optimal growth conditions, GSNOROE had the lowest SNO and NO levels and GSNORAS the highest, as expected by the GSNO-consuming activity of GSNOR. Under stress, this pattern was reversed. Analysis of oxygen uptake by isolated mitochondria showed that complex I and external NADH dehydrogenase activities were inhibited in GSNOROE cells grown under nutritional stress. Moreover, GSNOROE could not increase alternative oxidase (AOX) activity under nutritional stress. GSNORAS showed constitutively high activity of external NADH dehydrogenase, and maintained the activity of the uncoupling protein (UCP) under stress. The alterations observed in mitochondrial protein activities were not strictly correlated to changes in gene expression, but instead seemed to be related with the SNO/NO content, suggesting a post-transcriptional regulation. Overall, our results highlight the importance of GSNOR in modulating SNO and NO homeostasis as well mitochondrial functionality, both under normal and adverse conditions in A. thaliana cells. © 2012 Elsevier B.V.
KW - Alternative oxidase
KW - Arabidopsis thaliana
KW - GSNO reductase
KW - Nitric oxide
KW - Respiratory chain
KW - Uncoupling protein
U2 - 10.1016/j.bbabio.2012.11.011
DO - 10.1016/j.bbabio.2012.11.011
M3 - Article
SN - 0005-2728
VL - 1827
SP - 239
EP - 247
JO - Biochimica et Biophysica Acta - Bioenergetics
JF - Biochimica et Biophysica Acta - Bioenergetics
ER -