TY - JOUR
T1 - Modelling Effects of Rapid Evolution on Persistence and Stability in Structured Predator-Prey Systems
AU - Farkas, J. Z.
AU - Morozov, A. Y.
PY - 2014
Y1 - 2014
N2 - In this paper we explore the eco-evolutionary dynamics of a predator-prey model, where the prey population is structured according to a certain life history trait. The trait distribution within the prey population is the result of interplay between genetic inheritance and mutation, as well as selectivity in the consumption of prey by the predator. The evolutionary processes are considered to take place on the same time scale as ecological dynamics, i.e. we consider the evolution to be rapid. Previously published results show that population structuring and rapid evolution in such predator-prey system can stabilize an otherwise globally unstable dynamics even with an unlimited carrying capacity of prey. However, those findings were only based on direct numerical simulation of equations and obtained for particular parameterizations of model functions, which obviously calls into question the correctness and generality of the previous results. The main objective of the current study is to treat the model analytically and consider various parameterizations of predator selectivity and inheritance kernel. We investigate the existence of a coexistence stationary state in the model and carry out stability analysis of this state. We derive expressions for the Hopf bifurcation curve which can be used for constructing bifurcation diagrams in the parameter space without the need for a direct numerical simulation of the underlying integro-differential equations. We analytically show the possibility of stabilization of a globally unstable predator-prey system with prey structuring. We prove that the coexistence stationary state is stable when the saturation in the predation term is low. Finally, for a class of kernels describing genetic inheritance and mutation we show that stability of the predator-prey interaction will require a selectivity of predation according to the life trait.
AB - In this paper we explore the eco-evolutionary dynamics of a predator-prey model, where the prey population is structured according to a certain life history trait. The trait distribution within the prey population is the result of interplay between genetic inheritance and mutation, as well as selectivity in the consumption of prey by the predator. The evolutionary processes are considered to take place on the same time scale as ecological dynamics, i.e. we consider the evolution to be rapid. Previously published results show that population structuring and rapid evolution in such predator-prey system can stabilize an otherwise globally unstable dynamics even with an unlimited carrying capacity of prey. However, those findings were only based on direct numerical simulation of equations and obtained for particular parameterizations of model functions, which obviously calls into question the correctness and generality of the previous results. The main objective of the current study is to treat the model analytically and consider various parameterizations of predator selectivity and inheritance kernel. We investigate the existence of a coexistence stationary state in the model and carry out stability analysis of this state. We derive expressions for the Hopf bifurcation curve which can be used for constructing bifurcation diagrams in the parameter space without the need for a direct numerical simulation of the underlying integro-differential equations. We analytically show the possibility of stabilization of a globally unstable predator-prey system with prey structuring. We prove that the coexistence stationary state is stable when the saturation in the predation term is low. Finally, for a class of kernels describing genetic inheritance and mutation we show that stability of the predator-prey interaction will require a selectivity of predation according to the life trait.
KW - Integro-differential equations
KW - Population persistence
KW - Spectral theory of operators
KW - Stability analysis
KW - Structured populations
UR - https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=uab_pure&SrcAuth=WosAPI&KeyUT=WOS:000336957800003&DestLinkType=FullRecord&DestApp=WOS
U2 - 10.1051/mmnp/20149303
DO - 10.1051/mmnp/20149303
M3 - Article
SN - 0973-5348
VL - 9
SP - 26
EP - 46
JO - Mathematical Modelling of Natural Phenomena
JF - Mathematical Modelling of Natural Phenomena
IS - 3
ER -