MMPred : a tool to predict peptide mimicry events in MHC class II recognition

Filippo Guerri, Valentin Junet, Judith Farrés, Xavier Daura i Ribera

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

Resum

We present MMPred, a software tool that integrates epitope prediction and sequence alignment algorithms to streamline the computational analysis of molecular mimicry events in autoimmune diseases. Starting with two protein or peptide sets (e.g., from human and SARS-CoV-2), MMPred facilitates the generation, investigation, and testing of mimicry hypotheses by providing epitope predictions specifically for MHC class II alleles, which are frequently implicated in autoimmunity. However, the tool is easily extendable to MHC class I predictions by incorporating pre-trained models from CNN-PepPred and NetMHCpan. To evaluate MMPred's ability to produce biologically meaningful insights, we conducted a comprehensive assessment involving i) predicting associations between known HLA class II human autoepitopes and microbial-peptide mimicry, ii) interpreting these predictions within a systems biology framework to identify potential functional links between the predicted autoantigens and pathophysiological pathways related to autoimmune diseases, and iii) analyzing illustrative cases in the context of SARS-CoV-2 infection and autoimmunity. MMPred code and user guide are made freely available at https://github.com/ComputBiol-IBB/MMPRED.
Idioma originalAnglès
Pàgines (de-a)0001-15
Nombre de pàgines15
RevistaFrontiers in Genetics
Volum15
DOIs
Estat de la publicacióPublicada - 2024

Fingerprint

Navegar pels temes de recerca de 'MMPred : a tool to predict peptide mimicry events in MHC class II recognition'. Junts formen un fingerprint únic.

Com citar-ho