Missing Data in Traffic Estimation: A Variational Autoencoder Imputation Method

Producció científica: Contribució a una revistaArticleRecercaAvaluat per experts

48 Cites (Scopus)

Resum

Road traffic forecasting systems are in scenarios where sensor or system failure occur. In those scenarios, it is known that missing values negatively affect estimation accuracy although it is being often underestimate in current deep neural network approaches. Our assumption is that traffic data can be generated from a latent space. Thus, we propose an online unsupervised data imputation method based on learning the data distribution using a variational autoencoder (VAE). This is used as an independent pre-processing step prior to traffic forecasting which is then evaluated against missing data of a real-world dataset. Compared to other methods, we show that VAE improves post-imputation traffic forecasting performance while allowing for data augmentation, data compression and traffic classification at the same time.

Idioma originalAmerican English
Pàgines (de-a)2882-2886
Nombre de pàgines5
RevistaICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
DOIs
Estat de la publicacióPublicada - de maig 2019

Fingerprint

Navegar pels temes de recerca de 'Missing Data in Traffic Estimation: A Variational Autoencoder Imputation Method'. Junts formen un fingerprint únic.

Com citar-ho