Minimization of the Line Resistance Impact on Memdiode-Based Simulations of Multilayer Perceptron Arrays Applied to Pattern Recognition

Fernando Leonel Aguirre, Nicolás M. Gomez, Sebastián Matías Pazos, Félix Palumbo, Jordi, Suñé, Enrique Miranda

Producció científica: Contribució a una revistaArticleRecercaAvaluat per experts

10 Cites (Scopus)

Resum

In this paper, we extend the application of the Quasi-Static Memdiode model to the realistic SPICE simulation of memristor-based single (SLPs) and multilayer perceptrons (MLPs) intended for large dataset pattern recognition. By considering ex-situ training and the classification of the hand-written characters of the MNIST database, we evaluate the degradation of the inference accuracy due to the interconnection resistances for MLPs involving up to three hidden neural layers. Two approaches to reduce the impact of the line resistance are considered and implemented in our simulations, they are the inclusion of an iterative calibration algorithm and the partitioning of the synaptic layers into smaller blocks. The obtained results indicate that MLPs are more sensitive to the line resistance effect than SLPs and that partitioning is the most effective way to minimize the impact of high line resistance values
Idioma originalEnglish
RevistaJournal of Low Power Electronics and Applications
Volum11
Número1
DOIs
Estat de la publicacióPublicada - 2021

Fingerprint

Navegar pels temes de recerca de 'Minimization of the Line Resistance Impact on Memdiode-Based Simulations of Multilayer Perceptron Arrays Applied to Pattern Recognition'. Junts formen un fingerprint únic.

Com citar-ho