Minimal spectrum and the radical of Chinese algebras

Ferran Cedó, Jan Okniński

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

5 Cites (Scopus)

Resum

It is shown that every minimal prime ideal of the Chinese algebra of any finite rank is generated by a finite set of homogeneous elements of degree 2 or 3. A constructive way of producing minimal generating sets of all such ideals is found. As a consequence, it is shown that the Jacobson radical of the Chinese algebra is nilpotent. Moreover, the radical is not finitely generated if the rank of the algebra exceeds 2. © 2012 Springer Science+Business Media B.V.
Idioma originalAnglès
Pàgines (de-a)905-930
RevistaAlgebras and Representation Theory
Volum16
DOIs
Estat de la publicacióPublicada - 1 d’ag. 2013

Fingerprint

Navegar pels temes de recerca de 'Minimal spectrum and the radical of Chinese algebras'. Junts formen un fingerprint únic.

Com citar-ho