Minimal convex functions bounded below by the duality product

J. E. Martinez-Legaz, B. F. Svaiter

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

22 Cites (Scopus)

Resum

It is well known that the Fitzpatrick function of a maximal monotone operator is minimal in the class of convex functions bounded below by the duality product. Our main result establishes that, in the setting of reflexive Banach spaces, the converse also holds; that is, every such minimal function is the Fitzpatrick function of some maximal monotone operator. Whether this converse also holds in a nonreflexive Banach space remains an open problem. © 2007 American Mathematical Society.
Idioma originalAnglès
Pàgines (de-a)873-878
RevistaProceedings of the American Mathematical Society
Volum136
DOIs
Estat de la publicacióPublicada - 1 de març 2008

Fingerprint

Navegar pels temes de recerca de 'Minimal convex functions bounded below by the duality product'. Junts formen un fingerprint únic.

Com citar-ho