Measuring Features Strength in Probabilistic Classification

R. Delgado, X.A. Tibau

Producció científica: Capítol de llibreCapítolRecercaAvaluat per experts

1 Citació (Scopus)

Resum

Probabilistic classifiers output a probability of an input being a member of each of the possible classes, given some of its feature values, selecting most probable class as predicted class. We introduce and compare different measures of the feature strength in probabilistic confidence-weigthed classification models. For that, we follow two approaches: one based on conditional probability tables of the classification variable with respect to each feature, using different statistical distances and a correction parameter, and the second one based on accuracy in predicting classification from evidences on each isolated feature. On a case study, we compute these feature strength measures and rank features attending to them, comparing results.
Idioma originalAnglès
Títol de la publicacióMeasuring Features Strength in Probabilistic Classification
Pàgines357-369
Nombre de pàgines12
Volum853
ISBN (electrònic)978-3-319-91473-2
DOIs
Estat de la publicacióPublicada - 18 de maig 2018

Sèrie de publicacions

NomCommunications in Computer and Information Science
EditorSpringer-Verlag
ISSN (imprès)1865-0929

Fingerprint

Navegar pels temes de recerca de 'Measuring Features Strength in Probabilistic Classification'. Junts formen un fingerprint únic.

Com citar-ho