Mean and quantile regression Oaxaca-Blinder decompositions with an application to caste discrimination

Gabriel Montes-Rojas, Lucas Siga, Ram Mainali

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

11 Cites (Scopus)

Resum

© 2017, Springer Science+Business Media New York. This paper extends the Oaxaca-Blinder decomposition method to the quantile regression random-coefficients framework. Mean-based decompositions are obtained as the integration of the quantile regression decomposition process. This method allows identifying if the observed differences between two groups differ across quantiles, and if so, what is the contribution to the mean-based Oaxaca-Blinder decomposition. The proposed methodology is applied to the analysis of caste discrimination in Nepal. The results indicate that much of the discrimination occurs at the lowest quantiles, which implies that disadvantaged groups are the ones who suffer the most caste discrimination.
Idioma originalAnglès
Pàgines (de-a)245-255
RevistaJournal of Economic Inequality
Volum15
Número3
DOIs
Estat de la publicacióPublicada - 1 de set. 2017

Fingerprint

Navegar pels temes de recerca de 'Mean and quantile regression Oaxaca-Blinder decompositions with an application to caste discrimination'. Junts formen un fingerprint únic.

Com citar-ho