Maximising reward from a team of surveillance drones: A simheuristic approach to the stochastic team orienteering problem

Javier Panadero*, Angel A. Juan, Christopher Bayliss, Christine Currie

*Autor corresponent d’aquest treball

Producció científica: Contribució a una revistaArticleRecercaAvaluat per experts

39 Cites (Scopus)
3 Descàrregues (Pure)

Resum

We consider the problem of routing a team of unmanned aerial vehicles (drones) being used to take surveillance observations of target locations, where the value of information at each location is different and not all locations need be visited. As a result, this problem can be described as a stochastic team orienteering problem (STOP), in which travel times are modelled as random variables following generic probability distributions. The orienteering problem is a vehicle-routing problem in which each of a set of customers can be visited either just once or not at all within a limited time period. In order to solve this STOP, a simheuristic algorithm based on an original and fast heuristic is developed. This heuristic is then extended into a variable neighbourhood search (VNS) metaheuristic. Finally, simulation is incorporated into the VNS framework to transform it into a simheuristic algorithm, which is then employed to solve the STOP.

Idioma originalEnglish
Pàgines (de-a)485-516
Nombre de pàgines32
RevistaEuropean Journal of Industrial Engineering
Volum14
Número4
DOIs
Estat de la publicacióPublicada - 2020

Fingerprint

Navegar pels temes de recerca de 'Maximising reward from a team of surveillance drones: A simheuristic approach to the stochastic team orienteering problem'. Junts formen un fingerprint únic.

Com citar-ho