Malliavin Calculus for Stochastic Processes and Random Measures with Independent Increments

Josep Lluís Solé, Frederic Utzet

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

Resum

© 2016 Springer International Publishing Switzerland. Malliavin calculus for Poisson processes based on the difference operator or add-one-cost operator is extended to stochastic processes and random measures with independent increments. Our approach is to use a Wiener-Itô chaos expansion, valid for both stochastic processes and random measures with independent increments, to construct a Malliavin derivative and a Skorohod integral. Useful derivation rules for smooth functionals given by Geiss and Laukkarinen (Probab Math Stat 31:1-15, 2011) are proved. In addition, characterizations for processes or random measures with independent increments based on the duality between the Malliavin derivative and the Skorohod integral following an interesting point of view from Murr (Stoch Process Appl 123:1729-1749, 2013) are studied.
Idioma originalAnglès
Pàgines (de-a)103-143
RevistaBocconi and Springer Series
Volum7
DOIs
Estat de la publicacióPublicada - 1 de gen. 2016

Fingerprint

Navegar pels temes de recerca de 'Malliavin Calculus for Stochastic Processes and Random Measures with Independent Increments'. Junts formen un fingerprint únic.

Com citar-ho