Macroeconomic forecasting and structural change

Antonello D'Agostino, Luca Gambetti, Domenico Giannone

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

190 Cites (Scopus)

Resum

The aim of this paper is to assess whether modeling structural change can help improving the accuracy of macroeconomic forecasts. We conduct a simulated real-time out-of-sample exercise using a time-varying coefficients vector autoregression (VAR) with stochastic volatility to predict the inflation rate, unemployment rate and interest rate in the USA. The model generates accurate predictions for the three variables. In particular, the forecasts of inflation are much more accurate than those obtained with any other competing model, including fixed coefficients VARs, time-varying autoregressions and the naïve random walk model. The results hold true also after the mid 1980s, a period in which forecasting inflation was particularly hard. © 2011 John Wiley & Sons, Ltd.
Idioma originalAnglès
Pàgines (de-a)82-101
RevistaJournal of Applied Econometrics
Volum28
Número1
DOIs
Estat de la publicacióPublicada - 1 de gen. 2013

Fingerprint

Navegar pels temes de recerca de 'Macroeconomic forecasting and structural change'. Junts formen un fingerprint únic.

Com citar-ho