Projectes per any
Resum
It is well known that linear vector fields on the manifold R^n cannot have limit cycles, but this is not the case for linear vector fields on other manifolds. We study the periodic orbits of linear vector fields on different manifolds, and motivate and present an open problem on the number of limit cycles of linear vector fields on a class of C^1 connected manifold.
Idioma original | Anglès |
---|---|
Pàgines (de-a) | 3120-3131 |
Nombre de pàgines | 12 |
Revista | Nonlinearity |
Volum | 29 |
Estat de la publicació | En premsa - 2016 |
Fingerprint
Navegar pels temes de recerca de 'Limit cycles of linear vectors on manifolds'. Junts formen un fingerprint únic.Projectes
- 1 Acabat
-
Algunos aspectos de la dinamica global de los sistemas diferenciales: integrabilidad, soluciones periodicas y bifurcaciones
Llibre Salo, J. (PI), Torregrosa i Arús, J. (Investigador/a Principal 2), Geyer , A. (Col.laborador/a), Pérez González, S. (Col.laborador/a), Artes Ferragud, J. C. (Investigador/a), Caubergh , M. M. (Investigador/a), Cima Mollet, A. M. (Investigador/a), Corbera Subirana, M. (Investigador/a), Cors Iglesias, J. M. (Investigador/a), Ferragut, A. (Investigador/a), Gasull Embid, A. (Investigador/a), Pantazi, C. (Investigador/a), Schlomiuk, D. (Investigador/a), Valls, C. (Investigador/a) & Vulpe, N. (Investigador/a)
Ministerio de Economía y Competitividad (MINECO)
1/01/14 → 31/12/17
Projecte: Projectes i Ajuts a la Recerca