Limit cycles bifurcating of Kolmogorov systems in R2 and in R3

Jaume Llibre, Y. Paulina Martínez, Claudia Valls

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

12 Cites (Scopus)

Resum

In this work we consider the Kolmogorov system of degree 3 in R2 and R3 having an equilibrium point in the positive quadrant and octant, respectively. We provide sufficient conditions in order that the equilibrium point will be a Hopf point for the planar case and a zero-Hopf point for the spatial one. We study the limit cycles bifurcating from these equilibria using averaging theory of second and first order, respectively. We note that the equilibrium point is located in the quadrant or octant where the Kolmogorov systems have biological meaning.

Idioma originalAnglès
Número d’article105401
Nombre de pàgines10
RevistaCommunications in Nonlinear Science and Numerical Simulation
Volum91
DOIs
Estat de la publicacióPublicada - de des. 2020

Fingerprint

Navegar pels temes de recerca de 'Limit cycles bifurcating of Kolmogorov systems in R2 and in R3'. Junts formen un fingerprint únic.

Com citar-ho