Limit cycles bifurcating from the periodic orbits of the weight-homogeneous polynomial centers of weight-degree 3

Jaume Llibre, Bruno D. Lopes, Jaime R. de Moraes

Producció científica: Contribució a una revistaArticleRecercaAvaluat per experts

Resum

© 2018 Texas State University. In this article we obtain two explicit polynomials, whose simple positive real roots provide the limit cycles which bifurcate from the periodic orbits of a family of polynomial differential centers of order 5, when this family is perturbed inside the class of all polynomial differential systems of order 5, whose average function of first order is not zero. Then the maximum number of limit cycles that bifurcate from these periodic orbits is 6 and it is reached. This family of of centers completes the study of the limit cycles which can bifurcate from periodic orbits of all centers of the weight-homogeneous polynomial differential systems of weight-degree 3 when perturbed in the class of all polynomial differential systems having the same degree and whose average function of first order is not zero.
Idioma originalEnglish
Número d’article118
RevistaElectronic Journal of Differential Equations
Volum2018
Estat de la publicacióPublicada - 17 de maig 2018

Fingerprint

Navegar pels temes de recerca de 'Limit cycles bifurcating from the periodic orbits of the weight-homogeneous polynomial centers of weight-degree 3'. Junts formen un fingerprint únic.

Com citar-ho