Limit cycles bifurcating from the period annulus of quasi-Homogeneous centers

Weigu Li, Jiazhong Yang, Jaume Llibre, Zhifen Zhang

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

48 Cites (Scopus)

Resum

We provide upper bounds for the maximum number of limit cycles bifurcating from the period annulus of any homogeneous and quasi-homogeneous center, which can be obtained using the Abelian integral method of first order. We show that these bounds are the best possible using the Abelian integral method of first order. We note that these centers are in general non-Hamiltonian. As a consequence of our study we provide the biggest known number of limit cycles surrounding a unique singular point in terms of the degree n of the system for arbitrary large n. © 2008 Springer Science+Business Media, LLC.
Idioma originalAnglès
Pàgines (de-a)133-152
RevistaJournal of Dynamics and Differential Equations
Volum21
DOIs
Estat de la publicacióPublicada - 1 de març 2009

Fingerprint

Navegar pels temes de recerca de 'Limit cycles bifurcating from the period annulus of quasi-Homogeneous centers'. Junts formen un fingerprint únic.

Com citar-ho