Learning to learn from web data through deep semantic embeddings

Raul Gomez*, Lluis Gomez, Jaume Gibert, Dimosthenis Karatzas

*Autor corresponent d’aquest treball

Producció científica: Capítol de llibreCapítolRecercaAvaluat per experts

12 Cites (Scopus)

Resum

In this paper we propose to learn a multimodal image and text embedding from Web and Social Media data, aiming to leverage the semantic knowledge learnt in the text domain and transfer it to a visual model for semantic image retrieval. We demonstrate that the pipeline can learn from images with associated text without supervision and perform a thorough analysis of five different text embeddings in three different benchmarks. We show that the embeddings learnt with Web and Social Media data have competitive performances over supervised methods in the text based image retrieval task, and we clearly outperform state of the art in the MIRFlickr dataset when training in the target data. Further we demonstrate how semantic multimodal image retrieval can be performed using the learnt embeddings, going beyond classical instance-level retrieval problems. Finally, we present a new dataset, InstaCities1M, composed by Instagram images and their associated texts that can be used for fair comparison of image-text embeddings.

Idioma originalAnglès
Títol de la publicacióComputer Vision – ECCV 2018 Workshops, Proceedings
EditorsLaura Leal-Taixé, Stefan Roth
Pàgines514-529
Nombre de pàgines16
DOIs
Estat de la publicacióPublicada - 2019

Sèrie de publicacions

NomLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volum11134 LNCS
ISSN (imprès)0302-9743
ISSN (electrònic)1611-3349

Fingerprint

Navegar pels temes de recerca de 'Learning to learn from web data through deep semantic embeddings'. Junts formen un fingerprint únic.

Com citar-ho