Resum
We prove that the Krull-Schmidt theorem fails for artinian modules. This answers a question asked by Krull in 1932. In fact we show that if S is a module-finite algebra over a semilocal noetherian commutative ring, then every nonunique decomposition of every noetherian S-module leads to an analogous nonunique decomposition of an artinian module over a related non-noetherian ring. The key to this is that any such S is the endomorphism ring of some artinian module. © 1995 American Mathematical Society.
Idioma original | Anglès |
---|---|
Pàgines (de-a) | 3587-3592 |
Revista | Proceedings of the American Mathematical Society |
Volum | 123 |
Número | 12 |
DOIs | |
Estat de la publicació | Publicada - 1 de gen. 1995 |