Knotting fractional-order knots with the polarization state of light

Emilio Pisanty, Gerard J. Machado, Verónica Vicuña-Hernández, Antonio Picón, Alessio Celi, Juan P. Torres, Maciej Lewenstein

Producció científica: Contribució a revistaArticleRecerca

107 Cites (Scopus)

Resum

The fundamental polarization singularities of monochromatic light are normally associated with invariance under coordinated rotations: symmetry operations that rotate the spatial dependence of an electromagnetic field by an angle θ and its polarization by a multiple γθ of that angle. These symmetries are generated by mixed angular momenta of the form Jγ = L + γS, and they generally induce Möbius-strip topologies, with the coordination parameter γ restricted to integer and half-integer values. In this work we construct beams of light that are invariant under coordinated rotations for arbitrary rational γ, by exploiting the higher internal symmetry of ‘bicircular’ superpositions of counter-rotating circularly polarized beams at different frequencies. We show that these beams have the topology of a torus knot, which reflects the subgroup generated by the torus-knot angular momentum Jγ, and we characterize the resulting optical polarization singularity using third- and higher-order field moment tensors, which we experimentally observe using nonlinear polarization tomography.
Idioma originalAnglès
Número d’article13
Pàgines (de-a)569-574
Nombre de pàgines6
RevistaNature Photonics
Volum13
Número8
DOIs
Estat de la publicacióPublicada - 10 de juny 2019

Fingerprint

Navegar pels temes de recerca de 'Knotting fractional-order knots with the polarization state of light'. Junts formen un fingerprint únic.

Com citar-ho