Kernel generative topographic mapping of protein sequences

Martha Ivón Cárdenas, Iván Olier, Alfredo Vellido, Xavier Rovira, Jesús Giraldo

Producció científica: Capítol de llibreCapítolRecercaAvaluat per experts

Resum

© 2013, IGI Global. The world of pharmacology is becoming increasingly dependent on the advances in the fields of genomics and proteomics. The-omics sciences bring about the challenge of how to deal with the large amounts of complex data they generate from an intelligent data analysis perspective. In this chapter, the authors focus on the analysis of a specific type of proteins, the G protein-coupled receptors, which are the target for over 15% of current drugs. They describe a kernel method of the manifold learning family for the analysis of protein amino acid symbolic sequences. This method sheds light on the structure of protein subfamilies, while providing an intuitive visualization of such structure.
Idioma originalAnglès
Títol de la publicacióBioinformatics: Concepts, Methodologies, Tools, and Applications
Pàgines817-830
Nombre de pàgines13
Volum2
DOIs
Estat de la publicacióPublicada - 31 de març 2013

Fingerprint

Navegar pels temes de recerca de 'Kernel generative topographic mapping of protein sequences'. Junts formen un fingerprint únic.

Com citar-ho