Resum
© Springer-Verlag London Ltd. 2017. In this chapter we investigate many of the K-theoretic properties of LK(E). We start by considering the Grothendieck group K0(LK(E)), and then subsequently the Whitehead group K1(LK(E)). Next, we discuss one of the central currently-unresolved questions in the subject (the so-called Algebraic Kirchberg Phillips Question) which asks whether certain K0 data is sufficient to classify the purely infinite simple unital Leavitt path algebras up to isomorphism. We conclude with a discussion of tensor products of Leavitt path algebras, and Hochschild homology.
Idioma original | Anglès |
---|---|
Títol de la publicació | Lecture Notes in Mathematics |
Pàgines | 219-257 |
Nombre de pàgines | 38 |
Volum | 2191 |
DOIs | |
Estat de la publicació | Publicada - 1 de gen. 2017 |