Isomorphisms of Brin-Higman-Thompson groups

Warren Dicks, Conchita Martínez-Pérez

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

12 Cites (Scopus)

Resum

© 2014, Hebrew University Magnes Press. Let m, m′, r, r′, t, t′ be positive integers with r, r′ ⩾ 2. Let $\mathbb{L}_r $ denote the ring that is universal with an invertible 1×r matrix. Let (Formula presented.) denote the ring of m × m matrices over the tensor product of t copies of (Formula presented.). In a natural way, (Formula presented.) is a partially ordered ring with involution. Let (Formula presented.) denote the group of positive unitary elements. We show that (Formula presented.) is isomorphic to the Brin-Higman-Thompson group tVr,m; the case t=1 was found by Pardo, that is, $PU_m (\mathbb{L}_r )$ is isomorphic to the Higman-Thompson group Vr,m.We survey arguments of Abrams, Ánh, Bleak, Brin, Higman, Lanoue, Pardo and Thompson that prove that t′Vr′,m′ ≌ tVr,m if and only if r′ =r, t′ =t and gcd(m′, r′−1) = gcd(m, r−1) (if and only if (Formula presented.) are isomorphic as partially ordered rings with involution).
Idioma originalAnglès
Pàgines (de-a)189-218
RevistaIsrael Journal of Mathematics
Volum199
Número1
DOIs
Estat de la publicacióPublicada - 1 de gen. 2014

Fingerprint

Navegar pels temes de recerca de 'Isomorphisms of Brin-Higman-Thompson groups'. Junts formen un fingerprint únic.

Com citar-ho