TY - JOUR
T1 - Iron-dependent nitrogen cycling in a ferruginous lake and the nutrient status of Proterozoic oceans
AU - Michiels, Céline C.
AU - Darchambeau, François
AU - Roland, Fleur A.E.
AU - Morana, Cédric
AU - Llirós, Marc
AU - García-Armisen, Tamara
AU - Thamdrup, Bo
AU - Borges, Alberto V.
AU - Canfield, Donald E.
AU - Servais, Pierre
AU - Descy, Jean Pierre
AU - Crowe, Sean A.
PY - 2017/3/1
Y1 - 2017/3/1
N2 - Nitrogen limitation during the Proterozoic has been inferred from the great expanse of ocean anoxia under low-O 2 atmospheres, which could have promoted NO 3 â ' reduction to N 2 and fixed N loss from the ocean. The deep oceans were Fe rich (ferruginous) during much of this time, yet the dynamics of N cycling under such conditions remain entirely conceptual, as analogue environments are rare today. Here we use incubation experiments to show that a modern ferruginous basin, Kabuno Bay in East Africa, supports high rates of NO 3 â ' reduction. Although 60% of this NO 3 â ' is reduced to N 2 through canonical denitrification, a large fraction (40%) is reduced to NH 4 +, leading to N retention rather than loss. We also find that NO 3 â ' reduction is Fe dependent, demonstrating that such reactions occur in natural ferruginous water columns. Numerical modelling of ferruginous upwelling systems, informed by our results from Kabuno Bay, demonstrates that NO 3 â ' reduction to NH 4 + could have enhanced biological production, fuelling sulfate reduction and the development of mid-water euxinia overlying ferruginous deep oceans. This NO 3 â ' reduction to NH 4 + could also have partly offset a negative feedback on biological production that accompanies oxygenation of the surface ocean. Our results indicate that N loss in ferruginous upwelling systems may not have kept pace with global N fixation at marine phosphorous concentrations (0.04-0.13 μM) indicated by the rock record. We therefore suggest that global marine biological production under ferruginous ocean conditions in the Proterozoic eon may thus have been P not N limited.
AB - Nitrogen limitation during the Proterozoic has been inferred from the great expanse of ocean anoxia under low-O 2 atmospheres, which could have promoted NO 3 â ' reduction to N 2 and fixed N loss from the ocean. The deep oceans were Fe rich (ferruginous) during much of this time, yet the dynamics of N cycling under such conditions remain entirely conceptual, as analogue environments are rare today. Here we use incubation experiments to show that a modern ferruginous basin, Kabuno Bay in East Africa, supports high rates of NO 3 â ' reduction. Although 60% of this NO 3 â ' is reduced to N 2 through canonical denitrification, a large fraction (40%) is reduced to NH 4 +, leading to N retention rather than loss. We also find that NO 3 â ' reduction is Fe dependent, demonstrating that such reactions occur in natural ferruginous water columns. Numerical modelling of ferruginous upwelling systems, informed by our results from Kabuno Bay, demonstrates that NO 3 â ' reduction to NH 4 + could have enhanced biological production, fuelling sulfate reduction and the development of mid-water euxinia overlying ferruginous deep oceans. This NO 3 â ' reduction to NH 4 + could also have partly offset a negative feedback on biological production that accompanies oxygenation of the surface ocean. Our results indicate that N loss in ferruginous upwelling systems may not have kept pace with global N fixation at marine phosphorous concentrations (0.04-0.13 μM) indicated by the rock record. We therefore suggest that global marine biological production under ferruginous ocean conditions in the Proterozoic eon may thus have been P not N limited.
UR - https://www.scopus.com/pages/publications/85014392438
U2 - 10.1038/ngeo2886
DO - 10.1038/ngeo2886
M3 - Article
SN - 1752-0894
VL - 10
SP - 217
EP - 221
JO - Nature Geoscience
JF - Nature Geoscience
IS - 3
ER -