Intersection of Hamming codes avoiding Hamming subcodes

J. Rifà, F. I. Soloveva, M. Villanueva

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

3 Cites (Scopus)

Resum

We prove that given a binary Hamming code Hn of length n = 2 m - 1, m ≥ 3, or equivalently a projective geometry PG(m - 1, 2), there exist permutations π ∈ Sn, such that Hn and Hn do not have any Hamming subcode with the same support, or equivalently the corresponding projective geometries do not have any common flat. The introduced permutations are called AF permutations. We study some properties of these permutations and their relation with the well known APN functions. © 2011 Springer Science+Business Media, LLC.
Idioma originalAnglès
Pàgines (de-a)209-223
RevistaDesigns, Codes, and Cryptography
Volum62
Número2
DOIs
Estat de la publicacióPublicada - 1 de gen. 2012

Fingerprint

Navegar pels temes de recerca de 'Intersection of Hamming codes avoiding Hamming subcodes'. Junts formen un fingerprint únic.

Com citar-ho