Integrability and limit cycles of the Moon-Rand system

Luis Barreira, Claudia Valls, Jaume Llibre

Producció científica: Contribució a una revistaArticleRecercaAvaluat per experts

9 Cites (Scopus)

Resum

© 2014 Elsevier Ltd. We study the Darboux integrability of the Moon-Rand polynomial differential system. Moreover we study the limit cycles of the perturbed Moon-Rand system bifurcating from the equilibrium point located at the origin, when it is perturbed inside the class of all quadratic polynomial differential systems in R3, and we prove that at first order in the perturbation parameter ε the perturbed system can exhibit one limit cycle, and that at second order it can exhibit four limit cycles bifurcating from the origin. We provide explicit expressions of these limit cycles up to order O(ε2).
Idioma originalEnglish
Pàgines (de-a)129-136
RevistaInternational Journal of Non-Linear Mechanics
Volum69
DOIs
Estat de la publicacióPublicada - 1 de gen. 2015

Fingerprint

Navegar pels temes de recerca de 'Integrability and limit cycles of the Moon-Rand system'. Junts formen un fingerprint únic.

Com citar-ho