Incomplete transcriptional dosage compensation of chicken and platypus sex chromosomes is balanced by post-transcriptional compensation

Nicholas Lister, Ashley M. Milton, Hardip R. Patel, Shafagh A. Waters, Benjamin J. Hanrahan, Kim L. McIntyre, Alexandra M. Livernois, William B. Horspool, Lee Kian Wee, Alessa R. Ringel, Stefan Mundlos, Michael I. Robson, Linda Shearwin-Whyatt, Frank Grutzner, Jennifer A. Marshall Graves, Aurora Ruiz-Herrera Moreno, Paul D. Waters

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

1 Citació (Scopus)

Resum

Heteromorphic sex chromosomes (XY or ZW) present problems of gene dosage imbalance between sexes and with autosomes. A need for dosage compensation has long been thought to be critical in vertebrates. However, this was questioned by findings of unequal mRNA abundance measurements in monotreme mammals and birds. Here, we demonstrate unbalanced mRNA levels of X genes in platypus males and females and a correlation with differential loading of histone modifications. We also observed unbalanced transcripts of Z genes in chicken. Surprisingly, however, we found that protein abundance ratios were 1:1 between the sexes in both species, indicating a post-transcriptional layer of dosage compensation. We conclude that sex chromosome output is maintained in chicken and platypus (and perhaps many other non therian vertebrates) via a combination of transcriptional and post-transcriptional control, consistent with a critical importance of sex chromosome dosage compensation.
Idioma originalAnglès
Número d’articlee2322360121
RevistaProceedings of the National Academy of Sciences of the United States of America
Volum121
Número32
DOIs
Estat de la publicacióPublicada - 6 d’ag. 2024

Fingerprint

Navegar pels temes de recerca de 'Incomplete transcriptional dosage compensation of chicken and platypus sex chromosomes is balanced by post-transcriptional compensation'. Junts formen un fingerprint únic.

Com citar-ho