Improving relational classification using link prediction techniques

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

1 Citació (Scopus)

Resum

In this paper, we address the problem of classifying entities belonging to networked datasets. We show that assortativity is positively correlated with classification performance and how we are able to improve classification accuracy by increasing the assortativity of the network. Our method to increase assortativity is based on modifying the weights of the edges using a scoring function. We evaluate the ability of different functions to serve for this purpose. Experimental results show that, for the appropriated functions, classification on networks with modified weights outperforms the classification using the original weights.

Idioma originalAnglès nord-americà
Pàgines (de-a)590-605
Nombre de pàgines16
RevistaLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NúmeroPART 1
DOIs
Estat de la publicacióPublicada - 2013

Fingerprint

Navegar pels temes de recerca de 'Improving relational classification using link prediction techniques'. Junts formen un fingerprint únic.

Com citar-ho