ICDAR2017 Robust Reading Challenge on Multi-Lingual Scene Text Detection and Script Identification - RRC-MLT

Nibal Nayef*, Fei Yin, Imen Bizid, Hyunsoo Choi, Yuan Feng, Dimosthenis Karatzas, Zhenbo Luo, Umapada Pal, Christophe Rigaud, Joseph Chazalon, Wafa Khlif, Muhammad Muzzamil Luqman, Jean Christophe Burie, Cheng Lin Liu, Jean Marc Ogier

*Autor corresponent d’aquest treball

Producció científica: Capítol de llibreCapítolRecercaAvaluat per experts

415 Cites (Scopus)

Resum

Text detection and recognition in a natural environment are key components of many applications, ranging from business card digitization to shop indexation in a street. This competition aims at assessing the ability of state-of-The-art methods to detect Multi-Lingual Text (MLT) in scene images, such as in contents gathered from the Internet media and in modern cities where multiple cultures live and communicate together. This competition is an extension of the Robust Reading Competition (RRC) which has been held since 2003 both in ICDAR and in an online context. The proposed competition is presented as a new challenge of the RRC. The dataset built for this challenge largely extends the previous RRC editions in many aspects: the multi-lingual text, the size of the dataset, the multi-oriented text, the wide variety of scenes. The dataset is comprised of 18,000 images which contain text belonging to 9 languages. The challenge is comprised of three tasks related to text detection and script classification. We have received a total of 16 participations from the research and industrial communities. This paper presents the dataset, the tasks and the findings of this RRC-MLT challenge.

Idioma originalAnglès
Títol de la publicacióProceedings - 14th IAPR International Conference on Document Analysis and Recognition, ICDAR 2017
Pàgines1454-1459
Nombre de pàgines6
ISBN (electrònic)9781538635865
DOIs
Estat de la publicacióPublicada - 2 de jul. 2017

Sèrie de publicacions

NomProceedings of the International Conference on Document Analysis and Recognition, ICDAR
Volum1
ISSN (imprès)1520-5363

Fingerprint

Navegar pels temes de recerca de 'ICDAR2017 Robust Reading Challenge on Multi-Lingual Scene Text Detection and Script Identification - RRC-MLT'. Junts formen un fingerprint únic.

Com citar-ho