TY - JOUR
T1 - Human apolipoprotein A-II determines plasma triglycerides by regulating lipoprotein lipase activity and high-density lipoprotein proteome
AU - Julve, Josep
AU - Escolà-Gil, Joan Carles
AU - Rotllan, Noemi
AU - Fiévet, Catherine
AU - Vallez, Emmanuelle
AU - De La Torre, Carolina
AU - Ribas, Vicent
AU - Sloan, John H.
AU - Blanco-Vaca, Francisco
PY - 2010/1/1
Y1 - 2010/1/1
N2 - INTRODUCTION-: Apolipoprotein (apo) A-II is the second most abundant high-density lipoprotein (HDL) apolipoprotein. We assessed the mechanism involved in the altered postprandial triglyceride-rich lipoprotein metabolism of female human apoA-II-transgenic mice (hapoA-II-Tg mice), which results in up to an 11-fold increase in plasma triglyceride concentration. The relationships between apoA-II, HDL composition, and lipoprotein lipase (LPL) activity were also analyzed in a group of normolipidemic women. METHODS AND RESULTS-: Triglyceride-rich lipoprotein catabolism was decreased in hapoA-II-Tg mice compared to control mice. This suggests that hapoA-II, which was mainly associated with HDL during fasting and postprandially, impairs triglyceride-rich lipoprotein lipolysis. HDL isolated from hapoA-II-Tg mice impaired bovine LPL activity. Two-dimensional gel electrophoresis, mass spectrometry, and immunonephelometry identified a marked deficiency in the HDL content of apoA-I, apoC-III, and apoE in these mice. In normolipidemic women, apoA-II concentration was directly correlated with plasma triglyceride and inversely correlated with HDL-to-apoC-II+apoE/apoC-III ratios. HDL-mediated induction of LPL activity was inversely correlated with apoA-II and directly correlated with HDL-to-apoC-II+apoE/apoC-III ratios. Purified hapoA-II displaced apoC-II, apoC-III, and apoE from human HDL2. Human HDL3 was, compared to HDL2, enriched in apoA-II but poorer in apoC-II, apoC-III, and apoE. CONCLUSION-: ApoA-II plays a crucial role in triglyceride catabolism by regulating LPL activity, at least in part, through HDL proteome modulation. © 2010 American Heart Association, Inc.
AB - INTRODUCTION-: Apolipoprotein (apo) A-II is the second most abundant high-density lipoprotein (HDL) apolipoprotein. We assessed the mechanism involved in the altered postprandial triglyceride-rich lipoprotein metabolism of female human apoA-II-transgenic mice (hapoA-II-Tg mice), which results in up to an 11-fold increase in plasma triglyceride concentration. The relationships between apoA-II, HDL composition, and lipoprotein lipase (LPL) activity were also analyzed in a group of normolipidemic women. METHODS AND RESULTS-: Triglyceride-rich lipoprotein catabolism was decreased in hapoA-II-Tg mice compared to control mice. This suggests that hapoA-II, which was mainly associated with HDL during fasting and postprandially, impairs triglyceride-rich lipoprotein lipolysis. HDL isolated from hapoA-II-Tg mice impaired bovine LPL activity. Two-dimensional gel electrophoresis, mass spectrometry, and immunonephelometry identified a marked deficiency in the HDL content of apoA-I, apoC-III, and apoE in these mice. In normolipidemic women, apoA-II concentration was directly correlated with plasma triglyceride and inversely correlated with HDL-to-apoC-II+apoE/apoC-III ratios. HDL-mediated induction of LPL activity was inversely correlated with apoA-II and directly correlated with HDL-to-apoC-II+apoE/apoC-III ratios. Purified hapoA-II displaced apoC-II, apoC-III, and apoE from human HDL2. Human HDL3 was, compared to HDL2, enriched in apoA-II but poorer in apoC-II, apoC-III, and apoE. CONCLUSION-: ApoA-II plays a crucial role in triglyceride catabolism by regulating LPL activity, at least in part, through HDL proteome modulation. © 2010 American Heart Association, Inc.
KW - Chylomicron
KW - Lipolysis
KW - Proteomics
KW - Transgenic mice
KW - VLDL
U2 - 10.1161/ATVBAHA.109.198226
DO - 10.1161/ATVBAHA.109.198226
M3 - Article
SN - 1079-5642
VL - 30
SP - 232
EP - 238
JO - Arteriosclerosis, Thrombosis, and Vascular Biology
JF - Arteriosclerosis, Thrombosis, and Vascular Biology
IS - 2
ER -