TY - JOUR
T1 - Human α-galactosidase a mutants :
T2 - Priceless tools to develop novel therapies for fabry disease
AU - Modrego, Andrea
AU - Amaranto, Marilla
AU - Godino, Agustina
AU - Mendoza, Rosa
AU - Barra, José Luis
AU - Corchero Nieto, José Luis
PY - 2021
Y1 - 2021
N2 - Fabry disease (FD) is a lysosomal storage disease caused by mutations in the gene for the α-galactosidase A (GLA) enzyme. The absence of the enzyme or its activity results in the accumulation of glycosphingolipids, mainly globotriaosylceramide (Gb3), in different tissues, leading to a wide range of clinical manifestations. More than 1000 natural variants have been described in the GLA gene, most of them affecting proper protein folding and enzymatic activity. Currently, FD is treated by enzyme replacement therapy (ERT) or pharmacological chaperone therapy (PCT). How-ever, as both approaches show specific drawbacks, new strategies (such as new forms of ERT, or-gan/cell transplant, substrate reduction therapy, or gene therapy) are under extensive study. In this review, we summarize GLA mutants described so far and discuss their putative application for the development of novel drugs for the treatment of FD. Unfavorable mutants with lower activities and stabilities than wild-type enzymes could serve as tools for the development of new pharmacological chaperones. On the other hand, GLA mutants showing improved enzymatic activity have been identified and produced in vitro. Such mutants could overcome several complications associated with current ERT, as lower-dose infusions of these mutants could achieve a therapeutic effect equiv-alent to that of the wild-type enzyme.
AB - Fabry disease (FD) is a lysosomal storage disease caused by mutations in the gene for the α-galactosidase A (GLA) enzyme. The absence of the enzyme or its activity results in the accumulation of glycosphingolipids, mainly globotriaosylceramide (Gb3), in different tissues, leading to a wide range of clinical manifestations. More than 1000 natural variants have been described in the GLA gene, most of them affecting proper protein folding and enzymatic activity. Currently, FD is treated by enzyme replacement therapy (ERT) or pharmacological chaperone therapy (PCT). How-ever, as both approaches show specific drawbacks, new strategies (such as new forms of ERT, or-gan/cell transplant, substrate reduction therapy, or gene therapy) are under extensive study. In this review, we summarize GLA mutants described so far and discuss their putative application for the development of novel drugs for the treatment of FD. Unfavorable mutants with lower activities and stabilities than wild-type enzymes could serve as tools for the development of new pharmacological chaperones. On the other hand, GLA mutants showing improved enzymatic activity have been identified and produced in vitro. Such mutants could overcome several complications associated with current ERT, as lower-dose infusions of these mutants could achieve a therapeutic effect equiv-alent to that of the wild-type enzyme.
KW - Alpha-galactosidase A
KW - Fabry disease
KW - Pharmacological chaperones
KW - Rare diseases
KW - Enzyme replacement therapy
U2 - 10.3390/ijms22126518
DO - 10.3390/ijms22126518
M3 - Article
C2 - 34204583
SN - 1422-0067
VL - 22
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 12
ER -