Horospheres and convex bodies in n-dimensional hyperbolic space

Eduardo Gallego, Antonio M. Naveira, Gil Solanes

Producció científica: Contribució a una revistaArticleRecercaAvaluat per experts

5 Cites (Scopus)

Resum

In n-dimensional Euclidean space, the measure of hyperplanes intersecting a convex domain is proportional to the (n - 2)-mean curvature integral of its boundary. This question was considered by Santaló in hyperbolic space. In non-Euclidean geometry the totally geodesic hypersurfaces are not always the best analogue to linear hyperplanes. In some situations horospheres play the role of Euclidean hyperplanes. In dimensions n = 2 and 3, Santaló proved that the measure of horospheres intersecting a convex domain is also proportional to the (n - 2)-mean curvature integral of its boundary. In this paper we show that this analogy does not generalize to higher dimensions. We express the measure of horospheres intersecting a convex body as a linear combination of the mean curvature integrals of its boundary.
Idioma originalEnglish
Pàgines (de-a)103-114
RevistaGeometriae Dedicata
Volum103
Número1
DOIs
Estat de la publicacióPublicada - 1 de febr. 2004

Fingerprint

Navegar pels temes de recerca de 'Horospheres and convex bodies in n-dimensional hyperbolic space'. Junts formen un fingerprint únic.

Com citar-ho