Hopf bifurcation in 3-dimensional polynomial vector fields

Iván Sánchez-Sánchez, Joan Torregrosa

Producció científica: Contribució a una revistaArticleRecercaAvaluat per experts

4 Cites (Scopus)

Resum

In this work we study the local cyclicity of some polynomial vector fields in R 3. In particular, we give a quadratic system with 11 limit cycles, a cubic system with 31 limit cycles, a quartic system with 54 limit cycles, and a quintic system with 92 limit cycles. All limit cycles are small amplitude limit cycles and bifurcate from a Hopf type equilibrium. We introduce how to find Lyapunov constants in R 3 for considering the usual degenerate Hopf bifurcation with a parallelization approach, which enables to prove our results for 4th and 5th degrees.

Idioma originalEnglish
Nombre de pàgines13
RevistaCommunications in Nonlinear Science and Numerical Simulation
Volum105
DOIs
Estat de la publicacióPublicada - 1 de febr. 2022

Fingerprint

Navegar pels temes de recerca de 'Hopf bifurcation in 3-dimensional polynomial vector fields'. Junts formen un fingerprint únic.

Com citar-ho