TY - JOUR
T1 - Homeostatic control of recombination is implemented progressively in mouse meiosis
AU - Cole, Francesca
AU - Kauppi, Liisa
AU - Lange, Julian
AU - Roig, Ignasi
AU - Wang, Raymond
AU - Keeney, Scott
AU - Jasin, Maria
N1 - Funding Information:
We thank present and past members of the Jasin and Keeney laboratories for helpful discussions. F.C. was supported by a Ruth L. Kirschstein NRSA (F32HD51392). S.K. is an Investigator of the Howard Hughes Medical Institute. This work was supported by NIH grant HD040916 (to M.J. and S.K.).
PY - 2012/4/1
Y1 - 2012/4/1
N2 - Humans suffer from high rates of fetal aneuploidy, often arising from the absence of meiotic crossover recombination between homologous chromosomes. Meiotic recombination is initiated by double-strand breaks (DSBs) generated by the SPO11 transesterase. In yeast and worms, at least one buffering mechanism, crossover homeostasis, maintains crossover numbers despite variation in DSB numbers. We show here that mammals exhibit progressive homeostatic control of recombination. In wild-type mouse spermatocytes, focus numbers for early recombination proteins (RAD51, DMC1) were highly variable from cell to cell, whereas foci of the crossover marker MLH1 showed little variability. Furthermore, mice with greater or fewer copies of the Spo11 geneg-with correspondingly greater or fewer numbers of early recombination focig-exhibited relatively invariant crossover numbers. Homeostatic control is enforced during at least two stages, after the formation of early recombination intermediates and later while these intermediates mature towards crossovers. Thus, variability within the mammalian meiotic program is robustly managed by homeostatic mechanisms to control crossover formation, probably to suppress aneuploidy. Meiotic recombination exemplifies how order can be progressively implemented in a self-organizing system despite natural cell-to-cell disparities in the underlying biochemical processes. © 2012 Macmillan Publishers Limited. All rights reserved.
AB - Humans suffer from high rates of fetal aneuploidy, often arising from the absence of meiotic crossover recombination between homologous chromosomes. Meiotic recombination is initiated by double-strand breaks (DSBs) generated by the SPO11 transesterase. In yeast and worms, at least one buffering mechanism, crossover homeostasis, maintains crossover numbers despite variation in DSB numbers. We show here that mammals exhibit progressive homeostatic control of recombination. In wild-type mouse spermatocytes, focus numbers for early recombination proteins (RAD51, DMC1) were highly variable from cell to cell, whereas foci of the crossover marker MLH1 showed little variability. Furthermore, mice with greater or fewer copies of the Spo11 geneg-with correspondingly greater or fewer numbers of early recombination focig-exhibited relatively invariant crossover numbers. Homeostatic control is enforced during at least two stages, after the formation of early recombination intermediates and later while these intermediates mature towards crossovers. Thus, variability within the mammalian meiotic program is robustly managed by homeostatic mechanisms to control crossover formation, probably to suppress aneuploidy. Meiotic recombination exemplifies how order can be progressively implemented in a self-organizing system despite natural cell-to-cell disparities in the underlying biochemical processes. © 2012 Macmillan Publishers Limited. All rights reserved.
UR - http://www.scopus.com/inward/record.url?scp=84862777638&partnerID=8YFLogxK
U2 - 10.1038/ncb2451
DO - 10.1038/ncb2451
M3 - Article
C2 - 22388890
SN - 1465-7392
VL - 14
SP - 424
EP - 430
JO - Nature Cell Biology
JF - Nature Cell Biology
IS - 4
ER -