TY - JOUR
T1 - Hints for metal-preference protein sequence determinants
T2 - Different metal binding features of the five tetrahymena thermophila metallothioneins
AU - Espart, Anna
AU - Marín, Maribel
AU - Gil-Moreno, Selene
AU - Palacios, Òscar
AU - Amaro, Francisco
AU - Martín-González, Ana
AU - Gutiérrez, Juan C.
AU - Capdevila, Mercè
AU - Atrian, Sílvia
N1 - Publisher Copyright:
© 2015 Ivyspring International Publisher.
PY - 2015/3/18
Y1 - 2015/3/18
N2 - The metal binding preference of metallothioneins (MTs) groups them in two extreme subsets, the Zn/Cd- and the Cu-thioneins. Ciliates harbor the largest MT gene/protein family reported so far, in-cluding 5 paralogs that exhibit relatively low sequence similarity, excepting MTT2 and MTT4. In Tet-rahymena thermophila, three MTs (MTT1, MTT3 and MTT5) were considered Cd-thioneins and two (MTT2 and MTT4) Cu-thioneins, according to gene expression inducibility and phylogenetic analysis. In this study, the metal-binding abilities of the five MTT proteins were characterized, to obtain information about the folding and stability of their cognate- and non-cognate metal complexes, and to characterize the T. thermophila MT system at protein level. Hence, the five MTTs were recombinantly synthesized as Zn2+-, Cd2+- or Cu+-complexes, which were analyzed by electrospray mass spectrometry (ESI-MS), circular dichroism (CD), and UV-vis spectrophotometry. Among the Cd-thioneins, MTT1 and MTT5 were optimal for Cd2+ coordination, yielding unique Cd17- and Cd8- complexes, respectively. When binding Zn2+, they rendered a mixture of Zn-species. Only MTT5 was capable to coordinate Cu+, although yielding heteronuclear Zn-, Cu-species or highly unstable Cu-homometallic species. MTT3 exhibited poor binding abilities both for Cd2+ and for Cu+, and although not optimally, it yielded the best result when coordinating Zn2+. The two Cu-thioneins, MTT2 and MTT4 isoforms formed homometallic Cu-complexes (major Cu20-MTT) upon synthesis in Cu-supplemented hosts. Contrarily, they were unable to fold into stable Cd-complexes, while Zn-MTT species were only recovered for MTT4 (major Zn10-MTT4). Thus, the metal binding preferences of the five T. thermophila MTs correlate well with their previous classification as Cd- and Cu-thioneins, and globally, they can be classified from Zn/Cd- to Cu-thioneins according to the gradation: MTT1>MTT5>MTT3>MTT4>MTT2. The main mechanisms underlying the evolution and specialization of the MTT metal binding preferences may have been in-ternal tandem duplications, presence of doublet and triplet Cys patterns in Zn/Cd-thioneins, and op-timization of site specific amino acid determinants (Lys for Zn/Cd- and Asn for Cu-coordination).
AB - The metal binding preference of metallothioneins (MTs) groups them in two extreme subsets, the Zn/Cd- and the Cu-thioneins. Ciliates harbor the largest MT gene/protein family reported so far, in-cluding 5 paralogs that exhibit relatively low sequence similarity, excepting MTT2 and MTT4. In Tet-rahymena thermophila, three MTs (MTT1, MTT3 and MTT5) were considered Cd-thioneins and two (MTT2 and MTT4) Cu-thioneins, according to gene expression inducibility and phylogenetic analysis. In this study, the metal-binding abilities of the five MTT proteins were characterized, to obtain information about the folding and stability of their cognate- and non-cognate metal complexes, and to characterize the T. thermophila MT system at protein level. Hence, the five MTTs were recombinantly synthesized as Zn2+-, Cd2+- or Cu+-complexes, which were analyzed by electrospray mass spectrometry (ESI-MS), circular dichroism (CD), and UV-vis spectrophotometry. Among the Cd-thioneins, MTT1 and MTT5 were optimal for Cd2+ coordination, yielding unique Cd17- and Cd8- complexes, respectively. When binding Zn2+, they rendered a mixture of Zn-species. Only MTT5 was capable to coordinate Cu+, although yielding heteronuclear Zn-, Cu-species or highly unstable Cu-homometallic species. MTT3 exhibited poor binding abilities both for Cd2+ and for Cu+, and although not optimally, it yielded the best result when coordinating Zn2+. The two Cu-thioneins, MTT2 and MTT4 isoforms formed homometallic Cu-complexes (major Cu20-MTT) upon synthesis in Cu-supplemented hosts. Contrarily, they were unable to fold into stable Cd-complexes, while Zn-MTT species were only recovered for MTT4 (major Zn10-MTT4). Thus, the metal binding preferences of the five T. thermophila MTs correlate well with their previous classification as Cd- and Cu-thioneins, and globally, they can be classified from Zn/Cd- to Cu-thioneins according to the gradation: MTT1>MTT5>MTT3>MTT4>MTT2. The main mechanisms underlying the evolution and specialization of the MTT metal binding preferences may have been in-ternal tandem duplications, presence of doublet and triplet Cys patterns in Zn/Cd-thioneins, and op-timization of site specific amino acid determinants (Lys for Zn/Cd- and Asn for Cu-coordination).
KW - Copper
KW - Functional Differentiation
KW - Metal specificity
KW - Metallothionein
KW - Tetrahymena thermophila
KW - Zinc
UR - https://www.scopus.com/pages/publications/84928817540
U2 - 10.7150/ijbs.11060
DO - 10.7150/ijbs.11060
M3 - Article
C2 - 25798065
AN - SCOPUS:84928817540
SN - 1449-2288
VL - 11
SP - 456
EP - 471
JO - International Journal of Biological Sciences
JF - International Journal of Biological Sciences
IS - 4
ER -