Higher newton polygons and integral bases

Jordi Guàrdia, Jesús Montes, Enric Nart

Producció científica: Contribució a una revistaArticleRecercaAvaluat per experts

16 Cites (Scopus)

Resum

© 2014 Elsevier Inc. Let A be a Dedekind domain whose field of fractions K is a global field. Let p be a non-zero prime ideal of A, and Kp the completion of K at p. The Montes algorithm factorizes a monic irreducible polynomial f∈. A[. x] over Kp, and provides essential arithmetic information about the finite extensions of Kp determined by the different irreducible factors. In particular, it can be used to compute a p-integral basis of the extension of K determined by f. In this paper we present a new and faster method to compute p-integral bases, based on the use of the quotients of certain divisions with remainder of f that occur along the flow of the Montes algorithm.
Idioma originalEnglish
Pàgines (de-a)549-589
RevistaJournal of Number Theory
Volum147
DOIs
Estat de la publicacióPublicada - 1 de febr. 2015

Fingerprint

Navegar pels temes de recerca de 'Higher newton polygons and integral bases'. Junts formen un fingerprint únic.

Com citar-ho