High dimensionality voltammetric biosensor data processed with artificial neural networks

Andreu González-Calabuig, Georgina Faura, Manel Del Valle*

*Autor corresponent d’aquest treball

Producció científica: Capítol de llibreCapítolRecercaAvaluat per experts

3 Cites (Scopus)

Resum

This work report the coupling of an array of voltammetric sensors with artificial neural networks (ANN), usually named Electronic Tongue, for the simultaneous quantification of tryptophan, tyrosine and cysteine aminoacids. The obtained signals were compressed using fast Fourier transform (FFT) and then the ANN model was constructed from a set of low-frequency components. An ANN predictive model was obtained by back-propagation, which had 160 input neurons, one hidden layer with 7 neurons and used purelin and satlins functions in the hidden and output layer respectively, trained with a factorial design scheme . The model attained a total normalized root mean square error of 0.032 for an independent test set of data (n=15).

Idioma originalAnglès
Títol de la publicacióESANN 2017 - Proceedings, 25th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
Pàgines245-250
Nombre de pàgines6
ISBN (electrònic)9782875870391
Estat de la publicacióPublicada - 2017

Sèrie de publicacions

NomESANN 2017 - Proceedings, 25th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning

Fingerprint

Navegar pels temes de recerca de 'High dimensionality voltammetric biosensor data processed with artificial neural networks'. Junts formen un fingerprint únic.

Com citar-ho