Heisenberg-Weyl Observables: Bloch vectors in phase space

Ali Asadian, Paul Erker, Marcus Huber, Claude Klöckl

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

45 Cites (Scopus)

Resum

© 2016 American Physical Society. We introduce a Hermitian generalization of Pauli matrices to higher dimensions which is based on Heisenberg-Weyl operators. The complete set of Heisenberg-Weyl observables allows us to identify a real-valued Bloch vector for an arbitrary density operator in discrete phase space, with a smooth transition to infinite dimensions. Furthermore, we derive bounds on the sum of expectation values of any set of anticommuting observables. Such bounds can be used in entanglement detection and we show that Heisenberg-Weyl observables provide a first nontrivial example beyond the dichotomic case.
Idioma originalAnglès
Número d’article010301
RevistaPhysical Review A
Volum94
Número1
DOIs
Estat de la publicacióPublicada - 19 de jul. 2016

Fingerprint

Navegar pels temes de recerca de 'Heisenberg-Weyl Observables: Bloch vectors in phase space'. Junts formen un fingerprint únic.

Com citar-ho