TY - JOUR
T1 - Haemodiafiltration and mortality in end-stage kidney disease patients: A pooled individual participant data analysis from four randomized controlled trials
T2 - A pooled individual participant data analysis from four randomized controlled trials
AU - Peters, Sanne A.E.
AU - Bots, Michiel L.
AU - Canaud, Bernard
AU - Davenport, Andrew
AU - Grooteman, Muriel P.C.
AU - Kircelli, Fatih
AU - Locatelli, Francesco
AU - Maduell, Francisco
AU - Morena, Marion
AU - Nubé, Menso J.
AU - Ok, Ercan
AU - Torres, Ferran
AU - Woodward, Mark
AU - Blankestijn, Peter J.
PY - 2016/6/24
Y1 - 2016/6/24
N2 - © 2015 The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved. Background Mortality rates remain high for haemodialysis (HD) patients and simply increasing the HD dose to remove more small solutes does not improve survival. Online haemodiafiltration (HDF) provides additional clearance of larger toxins compared with standard HD. Randomized controlled trials (RCTs) comparing HDF with conventional HD on all-cause and cause-specific mortality in end-stage kidney disease (ESKD) patients reported inconsistent results and were at high risk of bias. We conducted a pooled individual participant data analysis of RCTs to provide the most reliable evidence to date on the effects of HDF on mortality outcomes in ESKD patients. Methods Individual participant data were used from four trials that compared online HDF with HD and were designed to examine the effects of HDF on mortality endpoints. Bias by informative censoring of patients was resolved. Hazard ratios (HRs) and 95% confidence intervals (95% CI) comparing the effect of online HDF versus HD on all-cause and cause-specific mortality were calculated using the Cox proportional hazard regression models. The relationship between convection volume and the study outcomes was examined by delivered convection volume standardized to body surface area. Results After a median follow-up of 2.5 years (Q1-Q3: 1.9-3.0), 769 of the 2793 participants had died (292 cardiovascular deaths). Online HDF reduced the risk of all-cause mortality by 14% (95% CI: 1%; 25%) and cardiovascular mortality by 23% (95% CI: 3%; 39%). There was no evidence for a differential effect in subgroups. The largest survival benefit was for patients receiving the highest delivered convection volume [>23 L per 1.73 m2 body surface area (BSA) per session], with a multivariable-adjusted HR of 0.78 (95% CI: 0.62; 0.98) for all-cause mortality and 0.69 (95% CI: 0.47; 1.00) for cardiovascular disease mortality. Conclusions This pooled individual participant analysis on the effects of online HDF compared with conventional HD indicates that online HDF reduces the risk of mortality in ESKD patients. This effect holds across a variety of important clinical subgroups of patients and is most pronounced for those receiving a higher convection volume normalized to BSA.
AB - © 2015 The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved. Background Mortality rates remain high for haemodialysis (HD) patients and simply increasing the HD dose to remove more small solutes does not improve survival. Online haemodiafiltration (HDF) provides additional clearance of larger toxins compared with standard HD. Randomized controlled trials (RCTs) comparing HDF with conventional HD on all-cause and cause-specific mortality in end-stage kidney disease (ESKD) patients reported inconsistent results and were at high risk of bias. We conducted a pooled individual participant data analysis of RCTs to provide the most reliable evidence to date on the effects of HDF on mortality outcomes in ESKD patients. Methods Individual participant data were used from four trials that compared online HDF with HD and were designed to examine the effects of HDF on mortality endpoints. Bias by informative censoring of patients was resolved. Hazard ratios (HRs) and 95% confidence intervals (95% CI) comparing the effect of online HDF versus HD on all-cause and cause-specific mortality were calculated using the Cox proportional hazard regression models. The relationship between convection volume and the study outcomes was examined by delivered convection volume standardized to body surface area. Results After a median follow-up of 2.5 years (Q1-Q3: 1.9-3.0), 769 of the 2793 participants had died (292 cardiovascular deaths). Online HDF reduced the risk of all-cause mortality by 14% (95% CI: 1%; 25%) and cardiovascular mortality by 23% (95% CI: 3%; 39%). There was no evidence for a differential effect in subgroups. The largest survival benefit was for patients receiving the highest delivered convection volume [>23 L per 1.73 m2 body surface area (BSA) per session], with a multivariable-adjusted HR of 0.78 (95% CI: 0.62; 0.98) for all-cause mortality and 0.69 (95% CI: 0.47; 1.00) for cardiovascular disease mortality. Conclusions This pooled individual participant analysis on the effects of online HDF compared with conventional HD indicates that online HDF reduces the risk of mortality in ESKD patients. This effect holds across a variety of important clinical subgroups of patients and is most pronounced for those receiving a higher convection volume normalized to BSA.
KW - haemodialysis
UR - http://www.scopus.com/inward/record.url?scp=84975142780&partnerID=8YFLogxK
U2 - 10.1093/ndt/gfv349
DO - 10.1093/ndt/gfv349
M3 - Article
C2 - 26492924
SN - 0931-0509
VL - 31
SP - 978
EP - 984
JO - Nephrology Dialysis Transplantation
JF - Nephrology Dialysis Transplantation
IS - 6
ER -