Resum
We propose a real-time pedestrian detection system for the embedded Nvidia Tegra X1 GPU-CPU hybrid platform. The detection pipeline is composed by the following state-of-the-art algorithms: features extracted from the input image are Histograms of Local Binary Patterns (LBP) and Histograms of Oriented Gradients (HOG); candidate generation using Pyramidal Sliding Window technique; and classification with Support Vector Machine (SVM). Experimental results show that the Tegra ARM platform is two times more energy efficient than a desktop GPU and at least 8 times faster than a desktop multicore CPU.
Idioma original | Anglès |
---|---|
Pàgines (de-a) | 2377-2381 |
Nombre de pàgines | 5 |
Revista | Procedia Computer Science |
Volum | 80 |
DOIs | |
Estat de la publicació | Publicada - 2016 |