Projectes per any
Resum
We study quasiconformal mappings in planar domains Ω and their regularity properties described in terms of Sobolev, Bessel potential or Triebel-Lizorkin scales. This leads to optimal conditions, in terms of the geometry of the boundary ∂Ω and of the smoothness of the Beltrami coefficient, that guarantee the global regularity of the mappings in these classes. In the Triebel-Lizorkin class with smoothness below 1, the same conditions give global regularity in Ω for the principal solutions with Beltrami coefficient supported in Ω.
Idioma original | Anglès |
---|---|
Pàgines (de-a) | 205-250 |
Nombre de pàgines | 46 |
Revista | Journal des Mathematiques Pures et Appliquees |
Volum | 186 |
DOIs | |
Estat de la publicació | Publicada - de juny 2024 |
Fingerprint
Navegar pels temes de recerca de 'Global smoothness of quasiconformal mappings in the Triebel-Lizorkin scale'. Junts formen un fingerprint únic.Projectes
- 1 Actiu
-
INTEGRALES SINGULARES, TEORIA GEOMETRICA DE LA MEDIDA Y EDP'S
Tolsa Domenech, X. (PI), Dabrowski ., D. M. (Col.laborador/a), Gallegos Saliner, J. M. (Col.laborador/a), Guillen Mola, I. (Col.laborador/a), Molero Casanova, A. (Col.laborador/a), Prats Soler, M. (Col.laborador/a), Sakellaris , G. (Col.laborador/a), Martin Pedret, J. (Investigador/a), Prat Baiget, L. (Investigador/a), Hernandez Garcia, J. (Col.laborador/a) & Ville Oikari, T. (Col.laborador/a)
1/09/21 → 31/08/25
Projecte: Projectes i Ajuts a la Recerca