Geometry of entanglement and separability in Hilbert subspaces of dimension up to three

Rotem Liss, Tal Mor, Andreas Winter

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

1 Citació (Scopus)

Resum

We present a complete classification of the geometry of the mutually complementary sets of entangled and separable states in three-dimensional Hilbert subspaces of bipartite and multipartite quantum systems. Our analysis begins by finding the geometric structure of the pure product states in a given three-dimensional Hilbert subspace, which determines all the possible separable and entangled mixed states over the same subspace. In bipartite systems, we characterise the 14 possible qualitatively different geometric shapes for the set of separable states in any three-dimensional Hilbert subspace (5 classes which also appear in two-dimensional subspaces and were found and analysed by Boyer et al. (Phys Rev A 95:032308, 2017. https://doi.org/10.1103/PhysRevA.95.032308), and 9 novel classes which appear only in three-dimensional subspaces), describe their geometries, and provide figures illustrating them. We also generalise these results to characterise the sets of fully separable states (and hence the complementary sets of somewhat entangled states) in three-dimensional subspaces of multipartite systems. Our results show which geometrical forms quantum entanglement can and cannot take in low-dimensional subspaces.
Idioma originalAnglès
Número d’article86
Nombre de pàgines31
RevistaLetters in Mathematical Physics
Volum114
Número3
DOIs
Estat de la publicacióPublicada - 21 de juny 2024

Fingerprint

Navegar pels temes de recerca de 'Geometry of entanglement and separability in Hilbert subspaces of dimension up to three'. Junts formen un fingerprint únic.
  • DYNAMICAL RESOURCES IN QUANTUM INFORMATION

    Muñoz Tapia, R. (PI), Calsamiglia Costa, J. (Co-Investigador/a Principal), Baghali Khanian, Z. (Col.laborador/a), Bilkis , M. (Col.laborador/a), Marconi , C. (Col.laborador/a), Martínez-Vargas, E. (Col.laborador/a), Riera Campeny, A. (Col.laborador/a), Rosati , M. (Col.laborador/a), Salek Shishavan, F. (Col.laborador/a), Skoteiniotis ., M. (Col.laborador/a), Strasberg ., P. (Col.laborador/a), Bagan Capella, E. (Investigador/a), Pons Barba, M. L. (Investigador/a), Sanpera Trigueros, A. (Investigador/a), Sentís Herrera, G. (Investigador/a), Winter , A. J. (Investigador/a), Díaz, M. G. (Col.laborador/a), Hoogsteder Riera, M. (Col.laborador/a), Gasbarri ., G. (Col.laborador/a), Fanizza ., M. (Col.laborador/a), Llorens Fernandez, S. (Col.laborador/a), Schindler ., J. C. (Col.laborador/a), Gavorova , Z. (Col.laborador/a), Cai , M. (Col.laborador/a), Zartab ., M. (Col.laborador/a), Galke ., N. (Col.laborador/a), Kothakonda , N. B. T. (Col.laborador/a), Ahiable , J. (Col.laborador/a), Roda Salichs, E. (Col.laborador/a), Svampa, I. (Col.laborador/a), Kunjwal, R. (Col.laborador/a), di Pietro, A. (Col.laborador/a), Strelchuk, S. (Col.laborador/a), Gerhard, K. S. (Col.laborador/a), Kleinmann, M. (Col.laborador/a) & Buscemi, F. (Col.laborador/a)

    1/01/2030/09/23

    Projecte: Projectes i Ajuts a la Recerca

Com citar-ho