Geometry of certain foliations on the complex projective plane

David Marín Pérez, Samir Bedrouni

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

Resum

Let d≥2 be an integer. The set F(d) of foliations of degree d on the complex projective plane can be identified with a Zariski's open set of a projective space of dimension d2+4d+2 on which Aut(P2C) acts. We show that there are exactly two orbits O(Fd1) and O(Fd2) of minimal dimension 6 , necessarily closed in F(d) . This generalizes known results in degrees 2 and 3. We deduce that an orbit O(F) of an element F∈F(d) of dimension 7 is closed in F(d) if and only if Fdi∉O(F)¯¯¯¯¯¯¯¯¯¯¯¯ for i=1,2. This allows us to show that in any degree d≥3 there are closed orbits in F(d) other than the orbits O(Fd1) and O(Fd2), unlike the situation in degree 2. On the other hand, we introduce the notion of the basin of attraction B(F) of a foliation F∈F(d) as the set of G∈F(d) such that F∈O(G)¯¯¯¯¯¯¯¯¯¯¯. We show that the basin of attraction B(Fd1) , resp. B(Fd2) , contains a quasi-projective subvariety of F(d) of dimension greater than or equal to dimF(d)−(d−1) , resp. dimF(d)−(d−3) . In particular, we obtain that the basin B(F32) contains a non-empty Zariski open subset of F(3) . This is an analog in degree 3 of a result on foliations of degree 2 due to Cerveau, Déserti, Garba Belko and Meziani.
Idioma originalAnglès
Nombre de pàgines27
RevistaAnnali della Scuola normale superiore di Pisa - Classe di scienze
Estat de la publicacióPublicada - 2022

Fingerprint

Navegar pels temes de recerca de 'Geometry of certain foliations on the complex projective plane'. Junts formen un fingerprint únic.

Com citar-ho