Genetic programming for classification and feature selection: Analysis of 1H nuclear magnetic resonance spectra from human brain tumour biopsies

Helen F. Gray, Ross J. Maxwell, Irene Martínez-Pérez, Carles Arús, Sebastían Cerdán

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

47 Cites (Scopus)

Resum

Genetic programming (GP) is used to classify tumours based on 1H nuclear magnetic resonance (NMR) spectra of biopsy extracts. Analysis of such data would ideally give not only a classification result but also indicate which parts of the spectra are driving the classification (i.e. feature selection). Experiments on a database of variables derived from 1H NMR spectra from human brain tumour extracts (n = 75) are reported, showing GP's classification abilities and comparing them with that of a neural network. GP successfully classified the data into meningioma and non-meningioma classes. The advantage over the neural network method was that it made use of simple combinations of a small group of metabolites, in particular glutamine, glutamate and alanine. This may help in the choice of the most informative NMR spectroscopy methods for future non-invasive studies in patients.
Idioma originalAnglès
Pàgines (de-a)217-224
RevistaNMR in Biomedicine
Volum11
Número4-5
DOIs
Estat de la publicacióPublicada - 1 de juny 1998

Fingerprint

Navegar pels temes de recerca de 'Genetic programming for classification and feature selection: Analysis of 1H nuclear magnetic resonance spectra from human brain tumour biopsies'. Junts formen un fingerprint únic.

Com citar-ho