Generic optimality conditions for semialgebraic convex programs

Jérôme Bolte, Aris Daniilidis, Adrian S. Lewis

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

27 Cites (Scopus)

Resum

We consider linear optimization over a nonempty convex semialgebraic feasible region F . Semidefinite programming is an example. If F is compact, then for almost every linear objective there is a unique optimal solution, lying on a unique "active" manifold, around which F is "partly smooth," and the second-order sufficient conditions hold. Perturbing the objective results in smooth variation of the optimal solution. The active manifold consists, locally, of these perturbed optimal solutions; it is independent of the representation of F and is eventually identified by a variety of iterative algorithms such as proximal and projected gradient schemes. These results extend to unbounded sets F. © 2011 INFORMS.
Idioma originalAnglès
Pàgines (de-a)55-70
RevistaMathematics of Operations Research
Volum36
Número1
DOIs
Estat de la publicacióPublicada - 1 de febr. 2011

Fingerprint

Navegar pels temes de recerca de 'Generic optimality conditions for semialgebraic convex programs'. Junts formen un fingerprint únic.

Com citar-ho