Gaussian density estimates for solutions to quasi-linear stochastic partial differential equations

David Nualart, Lluís Quer-Sardanyons

Producció científica: Contribució a una revistaArticleRecercaAvaluat per experts

23 Cites (Scopus)

Resum

In this paper we establish lower and upper Gaussian bounds for the solutions to the heat and wave equations driven by an additive Gaussian noise, using the techniques of Malliavin calculus and recent density estimates obtained by Nourdin and Viens in [17]. In particular, we deal with the one-dimensional stochastic heat equation in [0, 1] driven by the space-time white noise, and the stochastic heat and wave equations in Rd (d ≥ 1 and d ≤ 3, respectively) driven by a Gaussian noise which is white in time and has a general spatially homogeneous correlation. © 2009 Elsevier B.V. All rights reserved.
Idioma originalEnglish
Pàgines (de-a)3914-3938
RevistaStochastic Processes and their Applications
Volum119
DOIs
Estat de la publicacióPublicada - 1 de nov. 2009

Fingerprint

Navegar pels temes de recerca de 'Gaussian density estimates for solutions to quasi-linear stochastic partial differential equations'. Junts formen un fingerprint únic.

Com citar-ho