Fuzzy simheuristics: Solving optimization problems under stochastic and uncertainty scenarios

Diego Oliva, Pedro Copado, Salvador Hinojosa, Javier Panadero, Daniel Riera, Angel A. Juan*

*Autor corresponent d’aquest treball

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

16 Cites (Scopus)

Resum

Simheuristics combine metaheuristics with simulation in order to solve the optimization problems with stochastic elements. This paper introduces the concept of fuzzy simheuristics, which extends the simheuristics approach by making use of fuzzy techniques, thus allowing us to tackle optimization problems under a more general scenario, which includes uncertainty elements of both stochastic and non-stochastic nature. After reviewing the related work, the paper discusses, in detail, how the optimization, simulation, and fuzzy components can be efficiently integrated. In order to illustrate the potential of fuzzy simheuristics, we consider the team orienteering problem (TOP) under an uncertainty scenario, and perform a series of computational experiments. The obtained results show that our proposed approach is not only able to generate competitive solutions for the deterministic version of the TOP, but, more importantly, it can effectively solve more realistic TOP versions, including stochastic and other uncertainty elements.

Idioma originalAnglès
Número d’article2240
Pàgines (de-a)1-19
Nombre de pàgines19
RevistaMathematics
Volum8
Número12
DOIs
Estat de la publicacióPublicada - de des. 2020

Fingerprint

Navegar pels temes de recerca de 'Fuzzy simheuristics: Solving optimization problems under stochastic and uncertainty scenarios'. Junts formen un fingerprint únic.

Com citar-ho