Fundamental Limits of Metrology at Thermal Equilibrium

Paolo Abiuso, Pavel Sekatski, John Calsamiglia Costa, Martí Perarnau-Llobet

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

3 Cites (Scopus)

Resum

We consider the estimation of an unknown parameter 𝜃 through a quantum probe at thermal equilibrium. The probe is assumed to be in a Gibbs state according to its Hamiltonian 𝐻𝜃, which is divided in a parameter-encoding term 𝐻P
𝜃 and an additional, parameter-independent control 𝐻C. Given a fixed encoding, we find the maximal quantum Fisher information attainable via arbitrary 𝐻C, which provides a fundamental bound on the measurement precision. We elucidate the role of quantum coherence between encoding and control in different temperature regimes, which include ground state metrology as a limiting case. In the case of locally encoded parameters, the optimal sensitivity presents an 𝑁2 scaling in terms of the number of particles of the probe, which can be reached, at finite temperature, with local measurements and no entanglement. We apply our results to paradigmatic spin chain models, showing that these fundamental limits can be approached using local two-body interactions. Our results set the fundamental limits and optimal control for metrology with thermal and ground state probes, including probes at the verge of criticality.
Idioma originalAnglès
Número d’article010801
Nombre de pàgines7
RevistaPhysical review letters
Volum134
Número1
DOIs
Estat de la publicacióPublicada - 7 de gen. 2025

Fingerprint

Navegar pels temes de recerca de 'Fundamental Limits of Metrology at Thermal Equilibrium'. Junts formen un fingerprint únic.

Com citar-ho