Fractional Differentiability for Solutions of Nonlinear Elliptic Equations

A. L. Baisón, A. Clop, R. Giova, J. Orobitg, A. Passarelli di Napoli

Producció científica: Contribució a una revistaArticleRecercaAvaluat per experts

40 Cites (Scopus)

Resum

© 2016, Springer Science+Business Media Dordrecht. We study nonlinear elliptic equations in divergence form div A(x, Du) = divG When A has linear growth in Du, and assuming that x↦ A(x, ξ) enjoys (Formula presented.) smoothness, local well-posedness is found in (Formula presented.) for certain values of p∈[2,n/α) and q∈ [1 , ∞]. In the particular case A(x, ξ) = A(x) ξ, G = 0 and (Formula presented.), 1 ≤ q≤ ∞, we obtain Du ∈ (Formula presented.) for each p<n/α. Our main tool in the proof is a more general result, that holds also if A has growth s−1 in Du, 2 ≤ s ≤ n, and asserts local well-posedness in L q for each q > s, provided that x↦ A(x, ξ) satisfies a locally uniform VMO condition.
Idioma originalEnglish
Pàgines (de-a)403-430
RevistaPotential Analysis
Volum46
Número3
DOIs
Estat de la publicacióPublicada - 1 de març 2017

Fingerprint

Navegar pels temes de recerca de 'Fractional Differentiability for Solutions of Nonlinear Elliptic Equations'. Junts formen un fingerprint únic.

Com citar-ho