Formation versus hydrolysis of the peptide bond from a quantum-mechanical viewpoint: The role of mineral surfaces and implications for the origin of life

Albert Rimola, Piero Ugliengo, Mariona Sodupe

Producció científica: Contribució a una revistaArticleRecercaAvaluat per experts

26 Cites (Scopus)

Resum

The condensation (polymerization by water elimination) of molecular building blocks to yield the first active biopolymers (e.g. of amino acids to form peptides) during primitive Earth is an intriguing question that nowadays still remains open since these processes are thermodynamically disfavoured in highly dilute water solutions. In the present contribution, formation and hydrolysis of glycine oligopeptides occurring on a cluster model of sanidine feldspar (001) surface have been simulated by quantum mechanical methods. Results indicate that the catalytic interplay between Lewis and Bronsted sites both present at the sanidine surface, in cooperation with the London forces acting between the biomolecules and the inorganic surface, plays a crucial role to: i) favour the condensation of glycine to yield oligopeptides as reaction products; ii) inhibit the hydrolysis of the newly formed oligopeptides. Both facts suggest that mineral surfaces may have helped in catalyzing, stabilizing and protecting from hydration the oligopeptides formed in the prebiotic era.
Idioma originalEnglish
Pàgines (de-a)746-760
RevistaInternational Journal of Molecular Sciences
Volum10
DOIs
Estat de la publicacióPublicada - 1 de març 2009

Fingerprint

Navegar pels temes de recerca de 'Formation versus hydrolysis of the peptide bond from a quantum-mechanical viewpoint: The role of mineral surfaces and implications for the origin of life'. Junts formen un fingerprint únic.

Com citar-ho